Hand of the Week12/11/13

Board #10
East dealer
Both sides vulnerable
  
 North
10 8 7 4 2
A
K 9 8 3
9 5 4
 
West
9 6 3
10 9 8 7 4 2
A J 5
7
 East
A K 5
Q 5 3
6 4
J 10 8 3 2
 South
Q J
K J 6
Q 10 7 2
A K Q 6
 
    
SouthWestNorthEast
P
1P1P
2NTP3*P
3NTPPP

My partner and I did not actually play this hand; it was one of the three hands that we would have played against team #7, the phantom pair. We did go through the motions of bidding all four hands, however, and the auction above seemed pretty straightforward for any North-South team that played 15-17 1NT and New Minor Forcing (or some other form of checkback) over a 2NT rebid following an opening bid of one of a minor. In this case the 3 bid showed game-forcing values with exactly five spades. The opener should bid 3 with four hearts and, if not, 3 with three spades. I am not sure what 3 would mean. Some agreement like this is very important because it allows you to find a 5-3 major suit fit where the responder has five pieces. Sometimes, however, as on this hand, it provides a roadmap for the defense.

The only question in the bidding is whether West should try to muck things up by bidding 2 at the first opportunity. It is a pretty risky move at this vulnerability. Down two seems likely unless the declarer manages to ruff a diamond in the dummy.

West, who was on lead against 3NT at all three tables, knows a lot. He/she should realize that North has five spades, and South probably has two. East-West also know that South probably has three hearts, which probably leaves him/her with eight cards in the minors. From the bidding, West can deduce that the most likely distribution for South is therefore 2=3=4=4, and that is correct. With only one entry, the 10 is only slightly more attractive than the singleton minor, but in this case it performs the important function of using up one of only two entries to the dummy.

This hand is the classic race. Can declarer get three spade tricks before the opponents can claim their heart tricks? If West leads hearts, East-West should always win this race. East should be able to figure out that his partner has at least six hearts, and East should also know that South cannot have a third spade. So, if declarer continues with a second spade, East can safely lead another heart. Declarer, who has played all five cards in the major suits, must eventually lead diamonds, and West can take four tricks.

Declarer has a better line of play, which is to try for three hearts, three diamonds, and three clubs. After winning trick #3 declarer should lead a low diamond. West must duck. The A is his only entry. To win three diamond tricks declarer only needs the J to be on-side. The insertion of the eight or nine is called an "intrafinesse."

Another possibility is to try for four club tricks. This is much less than a 50-50 play, however. In this case, the lucky declarer finds out about the bad split early enough to abandon the effort before setting up East's suit.

Can East-West stop the 3-3-3 line? Well, declarer is counting on scoring the J, which requires that East lead hearts. If East switches to J at trick #2 and leads the ten when West puts him in in spades, declarer can score a fourth club trick in lieu of the Q. East's best hope of defeating this line is therefore a low club at trick #2. This defense will work unless declarer lets it run to the nine on the board. Would anyone think to do that?

One team made the bid; one went down one; and one went down two. What would I have done if we had played this hand as North-South? I can assure you of one thing. I would not have tried to set up spades. The reason that I can say this so confidently is that I was sitting North. I would have been the dummy.

It is also instructive to consider what would happen if West had decided to lead his singleton club. In that case North-South would have an extra tempo, and declarer could afford to set up the spade tricks in dummy.